
Maybenot: A Framework for Traffic Analysis Defenses
Tobias Pulls

Karlstad University
Sweden

tobias.pulls@kau.se

Ethan Witwer
University of Minnesota

USA
witwe004@umn.edu

ABSTRACT
In light of the increasing ubiquity of end-to-end encryption and
the use of technologies such as Tor and VPNs, analyzing commu-
nications metadata—traffic analysis—is a last resort for network
adversaries. Traffic analysis attacks are more effective thanks to im-
provements in deep learning, raising the importance of deploying
defenses. This paper introduces Maybenot, a framework for traffic
analysis defenses. Maybenot is an evolution and generalization
of the Tor Circuit Padding Framework by Perry and Kadianakis,
designed to support a wide range of protocols and use cases. De-
fenses are probabilistic state machines that trigger padding and
blocking actions based on events. A lightweight simulator enables
rapid development and testing of defenses. In addition to describing
the Maybenot framework, machines, and simulator, we implement
and thoroughly evaluate the state-of-the-art website fingerprinting
defenses FRONT and RegulaTor as Maybenot machines. Our eval-
uation identifies challenges associated with state machine-based
frameworks as well as possible enhancements that will further im-
prove Maybenot’s support for effective defenses moving forward.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; • Net-
works → Network privacy and anonymity.

KEYWORDS
website fingerprinting defenses, traffic analysis, framework

ACM Reference Format:
Tobias Pulls and Ethan Witwer. 2023. Maybenot: A Framework for Traffic
Analysis Defenses. In Proceedings of the 22nd Workshop on Privacy in the
Electronic Society (WPES ’23), November 26, 2023, Copenhagen, Denmark.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3603216.3624953

1 INTRODUCTION
End-to-end encryption is now prevalent after decades of effort, with
protocols such as QUIC [35], HTTP/3 [8], TLS 1.3 [63], DoH [31],
DoQ [34], MLS [6], and others defaulting to encryption. Concur-
rently, there is growing acceptance of technologies that make end-
users and their IP addresses unlinkable under different threat mod-
els, such as Tor [18], VPNs [3, 19, 62], and Apple’s iCloud Private
Relay [5, 53]. These trends make it more difficult for network opera-
tors to detect and block harmful traffic and for attackers to identify

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WPES ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0235-8/23/11.
https://doi.org/10.1145/3603216.3624953

and target individual users. The final frontier is traffic analysis:
inferences based on metadata of encrypted traffic.

Although there has been significant research on traffic analysis
attacks [15, 41, 46, 67, 77], few defenses are deployed on the Internet
today. Most existing defenses have been designed for technologies
striving for user and IP address unlinkability, like Tor. However,
they are modest regarding the overhead they generate, limiting
their effectiveness against many attacks [56]. Current protocol
standards do incorporate essential building blocks and acknowledge
their potential use in defending against traffic analysis, such as
the support for the PADDING frame in QUIC [35, §21.14] and the
contemplation of traffic analysis in TLS 1.3 [63, §3]. However, they
do not mandate any specific defenses or use.

Several factors contribute to the scarcity of deployed traffic anal-
ysis defenses. Firstly, the substantial negative performance impact
of strong defenses due to padding and increased latency raises
significant usability concerns [18, 56]. Given the steep costs, the
advantages must be evident: unfortunately, the community is far
from in agreement [14, 39, 52, 54, 75]. The landscape of traffic anal-
ysis attacks and defenses, driven by advancements in deep learning
and artificial intelligence, is changing rapidly, exacerbating this
issue [45]. Finally, it is critical to understand that achieving broad
adoption of end-to-end encryption took decades. Data or payload
leakage often seems more threatening than metadata, especially
when robust encryption is missing. However, thanks to the increas-
ing deployment of encryption, the public discourse is changing [1].

This paper presents Maybenot, a work in progress on a frame-
work for traffic analysis defenses. Maybenot gets its name and logo
from its purpose: to shed doubt on an attacker’s ability to draw
conclusions from traffic analysis of a protocol’s encrypted network
traffic. The logo of Maybenot is the thinking face emoji (Unicode
U+1F914). Maybenot is, by design, easy to integrate into existing
protocols with the goal of being simple yet expressive enough to
realize a wide range of traffic analysis defenses.

In the same vein as related work [23, 55, 56, 70], we think in-
tegrating a framework rather than a specific defense might be
motivated short-term given the rapid developments around traffic
analysis attacks and defenses. Figure 1 shows example protocols
where Maybenot integration could protect against traffic analysis
attackers in different threat models. For example, Maybenot could
be integrated with TLS as part of HTTPS to protect against webpage
fingerprinting (Figure 1a), as opposed to website fingerprinting as
in VPNs (Figure 1b) or Tor (Figure 1c).

We make the following contributions:

• A detailed description of the Maybenot traffic analysis de-
fense framework. Maybenot is an evolution of the Tor Circuit
Padding Framework [55, 56], generalizing and improving its
design, as well providing a clean abstraction as a library (Rust
crate) enabling ease of integration beyond Tor (Section 3).

 

75

https://orcid.org/0000-0001-6459-8409
https://orcid.org/0009-0006-8038-5693
https://doi.org/10.1145/3603216.3624953
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3603216.3624953
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603216.3624953&domain=pdf&date_stamp=2023-11-26


WPES ’23, November 26, 2023, Copenhagen, Denmark Tobias Pulls and Ethan Witwer

• A framework with support for Maybenot machines, support-
ing probabilistic transitions, blocking actions, and the ability
to construct constant-rate defenses (Section 4).

• The simple bare-bones Maybenot simulator for rapid devel-
opment and testing of Maybenot machines by simulating
their impact on undefended network traces (Section 5).

• Implementation and evaluation of the state-of-the-art web-
site fingerprinting defenses FRONT [22] and RegulaTor [33]
as Maybenot machines (Section 6).

• Discussion of key challenges, trade-offs, and opportunities
around state-based defenses based on lessons learned from
our evaluation (Section 7).

Section 2 briefly presents background, Section 8 related work on
traffic analysis defense frameworks, and Section 9 conclusions.

2 BACKGROUND
Maybenot primarily originates from Website Fingerprinting (WF)
defense work, closely linked to end-to-end flow correlation/con-
firmation. We will focus on WF in Section 2.1 and the broader
influence of traffic analysis defenses in Section 2.2.

2.1 Website Fingerprinting
In the WF setting, a local passive attacker monitors encrypted
client traffic to a website via a proxy or relay, typically Tor [18],
but also possibly a VPN [11, 12, 29, 30, 44, 71] or a new standard
like MASQUE related to iCloud Private Relay [5, 53]. The attacker’s
goal is to deduce the visited website or its subpage. We overview
WF attacks in Section 2.1.1 and defenses in Section 2.1.2. We survey
existing frameworks for defense implementation in Section 2.1.3.

2.1.1 Attacks. WF attacks use manual or automatic feature engi-
neering based on packet sequences, directions, timestamps, and
sizes. Important manual feature-engineered attacks include CU-
MUL [52] and k-fingerprinting [27]. However, post-2016 advances
in deep learning facilitated superior automatic feature engineer-
ing [2, 7, 61, 64, 69]. Deep Fingerprinting (DF) [69] and Tik-Tok [61]
are noteworthy, showing significant improvements over manual
feature engineering.

2.1.2 Defenses. The defense community has been working on var-
ious techniques, including imitation, regulation, alteration, traffic
splitting, and adversarial techniques [45]. Imitation defenses make
traffic from one website resemble that from another [50, 74, 76].
Regulation defenses, like Tamaraw [10] and RegulaTor [33], regu-
late traffic to match a target trace [24, 40]. Alteration defenses, like
FRONT [22] and DeTorrent [32], unpredictably modify the traffic
to make traces harder to classify. Traffic splitting defenses send traf-
fic unpredictably over multiple paths [28, 43, 73], and adversarial
techniques aim to thwart deep learning-based attacks [48, 60].

2.1.3 Frameworks. Several frameworks have been developed to
provide a platform for the implementation of defenses. The Tor Cir-
cuit Padding Framework [55, 56] allows for padding-based defenses
to be modeled using state machines and negotiated between clients
and relays. QCSD [70] shapes QUIC [35] traffic at the client side
without requiring server support, which boosts the potential for
adoption of defenses. WFDefProxy [23] makes use of the obfs4 [4]
Pluggable Transport [57] to support defenses between Tor clients

and bridges and enable real-world evaluation of these defenses. We
review these three frameworks in detail in Section 8.

2.2 Real-World Impact of Traffic Analysis
The real-world impact of traffic analysis attacks is widely discussed
in both the WF [14, 39, 52, 54, 75] and wider traffic analysis com-
munities [15–18, 41, 46, 47, 51, 65]. When evaluating defenses, we
consider empowered adversaries who may have unrealistic capa-
bilities or simplified assumptions. However, these might reflect
something other than the actual traffic analysis threat. A crucial
conclusion is the inherent trade-off between defense effectiveness
and efficiency. Any defense framework’s ability to adjust defenses
to fit different use cases is a primary feature. Hence the name May-
benot: the goal is to enable doubt about an attacker’s conclusions
from traffic analysis.

3 MAYBENOT FRAMEWORK
Figure 2 shows an overview of the Maybenot framework and its
integration with an encrypted communication protocol. Once in-
tegrated, Maybenot machines will trigger actions to take based on
events describing the communication. Machines are probabilistic
finite state machines, described in detail later in Section 4. The
framework is simply a means of running zero or more machines.
We implemented Maybenot in Rust as a library (crate). Basic type
definitions are used throughout this and the following section to
explain Maybenot and its integration, taking a top-down approach.
Further implementation details are available in the complementary
pre-print version of this paper [59].

Maybenot

machines

runtime limits

encrypted protocol

send
recv

actions

blockpadevents

integration

Figure 2: Overview of the Maybenot framework.

3.1 Instantiation
The first step in integrating the framework is to create an instance,
e.g., as part of circuit creation in Tor or when establishing a peer
connection in WireGuard. Creating an instance requires zero or
more machines, blocking and padding limits, the current time, and
the MTU of the connection.

Machines are provided by reference and read-only, enabling
multiple instances of the framework to safely and efficiently share
machines. Instead, each instance maintains a minimal runtime state
per machine (64 bytes, regardless of machine size). For the sake of
simplicity, the framework does not support dynamically adding or

 

76



Maybenot: A Framework for Traffic Analysis Defenses WPES ’23, November 26, 2023, Copenhagen, Denmark

(a) TLS client and server. (b) VPN client and relay. (c) Tor client and middle relay.

Figure 1: Example protocols and settings where Maybenot can be integrated to protect against traffic analysis by attackers .

removing machines. Instead, creating an instance of the framework
is a lightweight operation.

Limits are fractions of the total duration spent blocking and
the total bytes of padding sent. The framework keeps track of
and enforces these limits for all running machines and respective
individual limits set per machine (see Section 4). Limitations are
fundamental to traffic analysis defenses, typically offering efficiency
and effectiveness trade-offs.

Passing the current time to the framework—instead of having the
framework keep track on its own—results in a more straightforward
framework that is easier to test and use in simulation. It also makes
constructing defenses that operate in steps easier by using time as a
counter. Finally, the MTU of the communication channel is needed
to restrict the size of padding packets in padding actions.

Once instantiated, the integration between the protocol and
framework entails triggering events (Section 3.2) and processing
the resulting actions (Section 3.3).

3.2 Triggering Events
Events describe the communication channel. The integrator period-
ically triggers one or more events in the framework together with
the current time. The events are shown in Figure 3.

1 pub enum TriggerEvent {

2 NonPaddingRecv { bytes_recv: u16 },

3 PaddingRecv { bytes_recv: u16 },

4 NonPaddingSent { bytes_sent: u16 },

5 PaddingSent { bytes_sent: u16, machine: MachineId },

6 BlockingBegin { machine: MachineId },

7 BlockingEnd,

8 LimitReached { machine: MachineId },

9 UpdateMTU { new_mtu: u16 },

10 }

Figure 3: Events to trigger in the Maybenot framework.

Normal traffic is referred to as non-padding. Events that describe
padding and non-padding all require the size of the data in bytes.
In addition, when padding is sent, the machine that generated the
padding is identified for sake of machine-specific padding limits
and scoping events in the framework to the relevant machine.

Blocking actions (see Section 3.3) either begin or end, and when
they begin, the responsible machine is identified in the correspond-
ing event to enable the tracking of machine-specific limits. The
LimitReached event is an internal event triggered by the frame-
work when a machine reaches a state limit (explained in Section 4).
Finally, UpdateMTU provides a way to update the MTU without
recreating the framework.

3.3 Scheduling and Performing Actions
Triggering one or more events in the framework returns zero or
more actions that should be scheduled by the integrator. Each ma-
chine running in the framework has at most one scheduled action at
any point in time. Figure 4 shows the possible actions. The Cancel
action simply cancels any scheduled action for a machine.

1 pub enum Action {

2 Cancel { machine: MachineId },

3 InjectPadding {

4 timeout: Duration,

5 size: u16,

6 bypass: bool,

7 replace: bool,

8 machine: MachineId,

9 },

10 BlockOutgoing {

11 timeout: Duration,

12 duration: Duration,

13 bypass: bool,

14 replace: bool,

15 machine: MachineId,

16 },

17 }

Figure 4: Actions in the Maybenot framework.

The InjectPadding action specifies that a padding packet of
a particular size in bytes should be sent after a specific timeout.
Similarly, the BlockOutgoing action specifies that all outgoing
traffic should be blocked for a particular duration of time after a
timeout. Both actions specify the identifier of the machine, to be
used when triggering the corresponding event after timeout.

The bypass and replace flags, and their interactions, get a little
complicated. When blocking begins, the bypass flag determines if
the blocking can be bypassed by padding with the bypass flag set.
This enables bypassable blocking as well as the construction of de-
fenses that fail closed (blocking without the flag set). The replace,
for blocking, determines if the blocking should replace any existing
ongoing blocking, or if the longest remaining duration of blocking
should be set. For padding, the replace flag allows the padding
to be injected to be replaced by any normal (non-padding) data
queued or recently sent (within use case-specific limits as deter-
mined by the integrator). Together, the bypass and replace flags
enable constant-rate defenses by first setting bypassable blocking
followed by constant-rate padding with both flags set, resulting in
either padding or normal traffic being sent at a fixed rate.

4 MAYBENOT MACHINES
A machine encodes the logic of when to take what action based on
events. Machines are probabilistic finite state machines, building
on “padding machines” (nondeterministic finite state machines) in
the Tor Circuit Padding Framework [55, 56], further compared in

 

77



WPES ’23, November 26, 2023, Copenhagen, Denmark Tobias Pulls and Ethan Witwer

Section 8. Figure 5 shows the definition of a Maybenot machine. A
machine consists of four fields concerning limits, a vector of one
or more states, and a flag include_small_packets indicating if
the framework should consider packets of small sizes (helpful in
ignoring ACKs in, e.g., WireGuard).

1 pub struct Machine {

2 pub allowed_padding_bytes: u64,

3 pub max_padding_frac: f64,

4 pub allowed_blocked_microsec: u64,

5 pub max_blocking_frac: f64,

6 pub states: Vec<State>,

7 pub include_small_packets: bool,

8 }

Figure 5: A Maybenot machine.

The fraction limits behave like the framework-wide limits but
apply only to the machine in question. In addition, it is possible
to provide padding and blocking budgets (in absolute terms) that
circumvent all limits. Such budgets are particularly useful at the
start of connections, where fraction-based limits are impractical.

4.1 State
A machine must have at least one state. Figure 6 shows the defini-
tion of a state. For now, know that Dist represents a probability
distribution that can be sampled; more details are provided in Sec-
tion 4.2. Upon transitioning to a state (from another state or itself),
the framework samples a timeout for when a particular action
should be taken. We look closer at transitions, actions, and limits.

1 pub struct State {

2 pub timeout: Dist,

3 pub action: Dist,

4 pub action_is_block: bool,

5 pub bypass: bool,

6 pub replace: bool,

7 pub limit: Dist,

8 pub limit_includes_nonpadding: bool,

9 pub next_state: HashMap<Event, Vec<f64>>,

10 }

Figure 6: The state of a machine.

4.1.1 Transition. A machine has a current state, tracked by the
framework as part of its runtime. The first state is state 0 in a ma-
chine’s states vector. The next_statemap of a state maps events
to probability vectors. For each event (see Figure 3), there is a vector
of probabilities to transition to each state in the machine as well as
two meta events: StateCancel and StateEnd. The probabilities 𝑝
sum to at most one; 0 ≤ ∑𝑛+2

𝑖 𝑝𝑖 ≤ 1, for a machine with 𝑛 states.
The meta event StateCancel cancels any scheduled action with-
out transitioning to a new state. The meta event StateEnd does
not cancel any scheduled action but permanently ends the machine,
preventing future transitions. Note that the probabilities above do
not need to sum to one to support machines that only transition to
any state with a small probability.

4.1.2 Action. There are two possible actions (in addition to the
StateCancel action triggered by a state transition): blocking and
padding, determined by the action_is_block flag. The action
distribution either specifies the duration to block for or the size of

the padding. The action is subject to the bypass and replace flags,
as described in Section 3.3.

4.1.3 Limit. The per-state limit is distinct from the per-machine
or per-framework limits on padding and blocking. The per-state
limit gets sampled upon transitioning to the state from another
state. The limit gets decremented on each transition to itself, i.e.,
the same state. If the limit reaches 0, it prevents the scheduling of
future actions. The non-padding sent event also decreases the limit
with the limit_includes_nonpadding flag set. This behavior can
be helpful in conjunction with padding actions to send an exact
number of packets, regardless of whether they are padding or non-
padding packets.

4.2 Distribution
Maybenot supports a number of distributions, listed in Figure 7,
provided by the rand_dist1 crate. Together with picking the distri-
bution and its relevant parameters, each sample is rounded to a
positive value, potentially to a discrete value (bytes for padding),
and optionally clamped to a min and max value. The unit of time
in the framework is microseconds.

1 pub enum DistType {

2 None,

3 Uniform,

4 Normal,

5 LogNormal,

6 Binomial,

7 Pareto,

8 Poisson,

9 Weibull,

10 Gamma,

11 Beta,

12 }

Figure 7: Supported distributions.

4.3 Serialization
Machines can be serialized to and from hex-encoded strings using
either Maybenot’s space inefficient but simple and safe format, or
just with Serde2 (a commonly used framework for serialization and
deserialization in Rust). This enables machines to be dynamically
shared and changed at runtime with minimal overhead.

5 MAYBENOT SIMULATOR
The goal of the Maybenot simulator is to support the rapid develop-
ment and testing of Maybenot machines. Instead of collecting new
datasets of defended network traces, developers can simulate how
existing network traces would change with one or more machines
running at the client and server. Using the simulator entails (i) pars-
ing a base (existing) network trace and (ii) running the simulation.

The goal of the simulator is not to be a perfect simulator—
whatever that now would entail given that the framework is de-
signed to be integrated into a wide range of protocols—but to be a
helpful simulator. Hopefully, most development work can be done
with the simulator, and only fine-tuning is needed for later integra-
tion. For example, in the case of Tor, early development can happen
1https://crates.io/crates/rand_distr
2https://serde.rs/

 

78

https://crates.io/crates/rand_distr
https://serde.rs/


Maybenot: A Framework for Traffic Analysis Defenses WPES ’23, November 26, 2023, Copenhagen, Denmark

in the Maybenot simulator, with later large-scale experiments using
Shadow [36], followed by real-world deployment.

Figure 8 shows the average simulation time for the Maybenot
simulator for nine different websites. Each simulation simulated
up to 10,000 events with heavy Maybenot machines on both client
and server generating blocking and padding actions, similar to
RegulaTor [33]. Generated using Criterion.rs, a statistics-driven
benchmarking library for Rust, with 100 samples per website each
over 5s runtime on a 11th Gen Intel(R) Core(TM) i7-1165G7 @
2.80GHz laptop. Simulation is single-threaded and uses on the order
of 1MiB of memory. Much can probably be optimized.

website 9

website 8

website 7

website 6

website 5

website 4

website 3

website 2

website 1

0 2 4 6 8
Average time (ms)

PDF

Figure 8: Violin plot of simulation time for nine websites.

5.1 Base Network Traces
Figure 9 shows an example network trace of ten first packets from
WireGuard when visiting google.com and how to parse it. The
trace is a string of lines, where each line is a packet with the for-
mat “timestamp,direction,size\n”. The timestamp is the number of
nanoseconds since the start of the trace, the direction is either “s”
for sent or “r” for received (from the perspective of the client), and
the size is in bytes.

To parse the trace, the simulator also takes a delay, which is the
latency between the client and server. The delay is used to simulate
event queues for the client and server, such that the packets are
sent and arrive at the client exactly as in the provided trace. This
is a crude approximation of the network between the client and
server and should probably be improved to make the simulator
more useful in the long term [37].

1 let raw_trace = "0,s,52

2 19714282,r,52

3 183976147,s,52

4 243699564,r,52

5 1696037773,s,40

6 2047985926,s,52

7 2055955094,r,52

8 9401039609,s,73

9 9401094589,s,73

10 9420892765,r,191";

11

12 let delay = Duration::from_millis(10);

13 let mut input_trace = parse_trace(raw_trace, delay);

Figure 9: Parsing an example trace.

5.2 Simulating Machines
Figure 10 shows an example of simulating a machine on the trace
from Figure 9. The simulator supports zero or more machines run-
ning at the client and server. Because machines may run forever
(e.g., sending more padding on padding being sent), it is possible to
set the maximum number of events (client and server) to simulate
and a flag to filter out events only related to network packets. The
output of the simulator is a vector of events (see Figure 3) describing
the simulated trace, each annotated with a timestamp and flag (for
client or server), which is straightforward to parse.

1 use maybenot_simulator::sim;

2 use maybenot::machine::Machine;

3 use std::{str::FromStr, time::Duration};

4

5 let s = "789cedca2101...";

6 let m = vec![Machine::from_str(s).unwrap()];

7

8 let trace = sim(

9 vec![m], // client machines

10 vec![], // server machines

11 &mut input_trace,

12 delay,

13 100, // max events

14 true, // only return packet events?

15 );

Figure 10: Simulating a machine on a trace.

6 IMPLEMENTING DEFENSES
To evaluate Maybenot’s support for proposed website fingerprint-
ing defenses, we created machines that implement two state-of-the-
art defenses: FRONT [22] and RegulaTor [33].

6.1 FRONT
FRONT [22] is a padding-only defense intended to conceal useful
features present at the beginning of a trace. It samples time values
from a Rayleigh distribution before every download, and a padding
packet is sent at each of these times relative to download start.

To initialize the defense, the client samples a padding count 𝑛𝑐
from a discrete uniform distribution with range [1, 𝑁𝑐 ], and the
server samples 𝑛𝑠 from the range [1, 𝑁𝑠 ]; parameters 𝑁𝑐 and 𝑁𝑠 are
the client and server’s padding budgets, respectively. The client and
server also sample a padding window (𝑤𝑐 and𝑤𝑠 ) from a continuous
uniform distribution with range [𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥 ].

After selecting parameters, the client samples 𝑛𝑐 time values
(in seconds) from a Rayleigh distribution with 𝜎 = 𝑤𝑐 , and the
server samples 𝑛𝑠 values from a Rayleigh distribution with 𝜎 = 𝑤𝑠 .
A padding packet is then sent at each of these times relative to
download start, and no further padding is sent once a download
completes. The use of varying padding counts and windows al-
lows for trace-to-trace randomness, which reduces the ability of a
classifier to train effectively on defended traces.

Maybenot FRONT. Since the client and server follow the same
steps to enact the defense, we implemented FRONT in Maybenot
using a single machine design, which we refer to as Maybenot
FRONT. It consists of a START state and a number of PADDING
states arranged in sequence, as shown in Figure 11. Each machine is

 

79

google.com


WPES ’23, November 26, 2023, Copenhagen, Denmark Tobias Pulls and Ethan Witwer

START PADDING PADDING PADDING StateEnd

NonPaddingSent
NonPaddingRecv

100%

PaddingSent
100%

LimitReached
100%

PaddingSent
100%

LimitReached
100%

PaddingSent
100%

LimitReached
100%

Figure 11: Maybenot FRONT machine with three PADDING states.

characterized by its padding budget 𝑁 , maximum padding window
𝑊𝑚𝑎𝑥 , and number of PADDING states𝜓 .

A transition occurs from START to the first PADDING state when
the first packet is sent or received on a connection, as determined by
theNonPaddingSent andNonPaddingRecv events. Maybenot FRONT
then proceeds sequentially through the remaining PADDING states
until it reaches StateEnd, stopping the defense.

When a PADDING state is transitioned to, it generates a padding
action with a sampled timeout value; size is sampled from a uniform
action distribution with 𝑎 = 𝑏, so the integrator will send a single
packet after the timeout expires. As a result, a PaddingSent event
will be triggered, causing a self-transition. This will occur repeat-
edly until the state’s limit is reached, at which time a LimitReached
event will be triggered, causing a transition to the next state.

Each PADDING state is modeled as corresponding to a fixed time
slice of a download; a normal timeout distribution is used, and
parameters are selected to approximate the distribution of inter-
packet delays that would result during the interval if time values
were sampled from a Rayleigh distribution with 𝜎 =𝑊𝑚𝑎𝑥 . In a ma-
chine with𝜓 PADDING states, the timeout distribution parameters
of a PADDING state that spans the interval from 𝑡1 to 𝑡2 are:

𝜇 =
𝜓

𝑁
· (𝑡2 − 𝑡1) (1)

𝜎 =
𝑊 2
𝑚𝑎𝑥√
𝜋

· (𝑁
𝜓

· 𝑡1 + 𝑡2
2

)−1 (2)

𝜇 is selected to be the inter-packet delay that would result in ex-
actly 𝑁 /𝜓 packets being sent during the interval from 𝑡1 to 𝑡2. The
equation for 𝜎 is partially derived from the results of preliminary
simulations and trace comparisons; it allows for greater variation
of inter-packet delays near the beginning of a download, and varia-
tion is increased for larger values of𝑊𝑚𝑎𝑥 . To prevent excessive
variation, timeout values are bounded to be in the range [0, 2 · 𝜇]
by specifying a max parameter for the timeout distribution.

If each state had a constant limit corresponding to the number
of packets that would most likely be sent during its interval, this
would allow for a precise approximation of the sending rate of
padding packets that would result from a Rayleigh distribution.
However, such a design would exclude the trace-to-trace random-
ness FRONT is intended to achieve: a machine’s padding count
would be constant, and variation of the padding window would be
small and only due to differences in sampled timeout values.

To mimic the sampling performed by FRONT, we instead use
a uniform distribution with range [1, 𝑁 /𝜓 ] for each state’s limit.
Thus, padding count is effectively sampled from a uniform sum

distribution with range [𝜓, 𝑁 ]. Note that this change allows for
variation in the padding count as well as the padding window, as
the times at which state transitions occur become more variable.

Pipelined FRONT. A limitation of Maybenot FRONT is that the
timeout distribution parameters of PADDING states are calculated
using values that are fixed for each machine. Although the padding
count and window do vary among downloads, inter-packet timing
is less variable, which reduces the efficacy of the defense. To remedy
this, we introduce Pipelined FRONT, a design based on the same
principles as Maybenot FRONT but with multiple pipelines that
have different padding budgets.

In this machine, the first state to transition to is chosen from a set
of PADDING states which all have equal probability, and each one
leads to a different pipeline. This allows for variation of the padding
count and window, as with Maybenot FRONT, as well as inter-
packet timing, which greatly improves trace-to-trace randomness.
See Appendix A for further details.

6.2 RegulaTor
RegulaTor [33] is a regularization defense for Tor [18] based on
the observation that Tor traffic consists of “surges” of cells sent
within a short period of time along with intervening periods of
lower cell volume. Surges are typically present at the beginning
of a download, and traffic decreases exponentially as time elapses.
RegulaTor leverages this fact to reduce the uniqueness of surges
and, consequently, their usefulness as WF attack features.

This is accomplished by sending download traffic at a set initial
rate 𝑅 (s−1) which decreases according to a decay function: at any
given time, the current rate is calculated by 𝑅𝐷𝑡 , where𝐷 is a decay
parameter and 𝑡 is the time elapsed since surge start. The surge
start time is initialized to download start time, but if the number of
queued cells exceeds a threshold (𝑇 · rate), a new surge begins, and
traffic is once again sent at the initial rate.

However, to reduce overhead, the relay samples a padding count
for each download from a discrete uniform distribution with range
[0, 𝑁 ], where 𝑁 is a parameter specifying the padding budget. The
relay will stop sending padding cells to achieve a constant send-
ing rate after this count has been exceeded, instead delaying non-
padding cells to cap the sending rate.

Upload traffic is sent at a constant fraction of the rate of download
traffic: the client sends one cell for every 𝑈 cells received. There
is one exception to this: to ensure download progress, any queued
cells will be sent immediately after they have been waiting for a
configurable amount of time (𝐶 seconds).

 

80



Maybenot: A Framework for Traffic Analysis Defenses WPES ’23, November 26, 2023, Copenhagen, Denmark

START

BLOCK BOOT_0 ... BOOT_8

SEND_0...SEND_KStateEnd

N
on
Pa
dd
in
gS
en
t

10
0%

BlockingBegin
100%

PaddingSent
100%

NonPaddingSent
100%

NonPaddingSent
100%

PaddingSent
100%

N
onPaddingSent

100%

LimitReached
100%

LimitReached
100%

NonPaddingSent
2/(𝑇 ∗ 𝑟𝑎𝑡𝑒 ) PaddingSent

100%
PaddingSent

100%

LimitReached
100%

Figure 12: Maybenot RegulaTor relay machine with 𝐾 SEND states.

COUNT COUNT

COUNTSEND

(Non)PaddingRecv
100%

(N
on)PaddingRecv

100%

(Non)PaddingRecv
100%

Pa
dd
in
gS
en
t

10
0%

Figure 13: Maybenot RegulaTor client
machine with 𝑈 = 3.

Maybenot RegulaTor. We created two machine designs to approx-
imate RegulaTor, one for clients and one for relays. We refer to
these machines collectively as Maybenot RegulaTor.

The relay machine can be seen as proceeding through three
distinct stages: (1) infinite blocking is enabled with the bypass
and replace flags set; (2) until 10 cells have been sent, a constant
traffic rate of 10 cells/second is maintained; and (3) constant-rate
SEND states are used to approximate the sending rate imposed by
RegulaTor’s decay function. This machine is depicted in Figure 12.

When the first NonPaddingSent event is triggered, the machine
transitions to the BLOCK state, which enables infinite blocking with
the bypass and replace flags set; this allows for constant traffic rates
to be set later. Once the integrator has carried out the blocking
action, a BlockingBegin event will be triggered, causing the machine
to transition to the BOOT_0 state.

Each BOOT state generates a padding action with the bypass and
replace flags set and a 100 ms timeout. When the corresponding
PaddingSent event is triggered, a self-transition occurs: this results
in a constant traffic rate of 10 cells/second. When a NonPaddingSent
event is triggered, a transition is made to the next BOOT state or, in
the case of BOOT_8, the SEND_0 state. Including theNonPaddingSent
event that causes a transition to the BLOCK state, then, exactly 10
non-padding cells are sent before the SEND_0 state is reached.

The SEND states each have the same limit and set a constant
traffic rate (timeout) to approximate RegulaTor’s decay function.
RegulaTor also specifies that if a certain threshold of queued cells is
exceeded, a new surge is said to have started and the rate should be
increased back to its initial value. We implement this behavior prob-
abilistically with a small chance of transitioning back to SEND_0
when a NonPaddingSent event is triggered.

Our implementation excludes the 𝑁 parameter of RegulaTor,
allowing machines to send an unlimited amount of padding during
a download. Although Maybenot has features to set padding limits,

these will prevent a machine from generating any actions; there is
no way to specify that the sending rate should be capped.

Client machine. The client machine sends one cell for every
𝑈 cells received. It consists of a configurable number of COUNT
states arranged in sequence, which enable infinite blocking with
the bypass and replace flags set, transitioning to the next state when
a PaddingRecv or NonPaddingRecv event is triggered; and a single
SEND state, which generates a padding action with no timeout and
the bypass and replace flags set, transitioning to the first COUNT
state when a PaddingSent event is triggered.

If𝑈 is a whole number, this machine consists of 𝑈 COUNT states
that each have a 100% probability of transitioning to either the next
COUNT state or, in the case of the last COUNT state, the SEND state
when a PaddingRecv or NonPaddingRecv event is triggered. Thus,
one cell is sent for every 𝑈 received, as in Figure 13.

If𝑈 is not a whole number, there are ⌊𝑈 ⌋ COUNT states, and the
probability of transition from the last COUNT state to the SEND state
is set to 1 − (𝑈 − ⌊𝑈 ⌋); if this does not occur, a self-transition does.
The next cell received will cause an immediate transition to SEND:
the limit for the last COUNT state is fixed at 2, and the LimitReached
event causes a transition to SENDwith 100% probability. This design
is intended to probabilistically approximate the expected behavior
of non-integral values of 𝑈 .

While both of these machines effectively mimic the RegulaTor
client’s behavior, they do not include the 𝐶 parameter, which de-
termines the maximum amount of time that a cell can be queued
for before being sent immediately. Thus, a cell might be queued
indefinitely, which could result in download progress being slower
than with an exact implementation of RegulaTor.

6.3 Evaluation
We evaluated our implementations of FRONT and RegulaTor using
the BigEnough dataset [45] collected by Mathews et al. Specifically,

 

81



WPES ’23, November 26, 2023, Copenhagen, Denmark Tobias Pulls and Ethan Witwer

Table 1: Parameters selected for each implementation of FRONT and RegulaTor.

(a) FRONT parameters.

Defense Parameters
𝑁 𝑊𝑚𝑖𝑛 𝑊𝑚𝑎𝑥 𝜓

Maybenot FT-1 1500 1 s 14 s 30
Pipelined FT-1 3000 1 s 14 s 30 × 30
Simulated FT-1 1700 1 s 14 s —
Maybenot FT-2 2500 1 s 14 s 50
Pipelined FT-2 4500 1 s 14 s 45 × 45
Simulated FT-2 2500 1 s 14 s —

(b) RegulaTor parameters.

Defense Parameters
𝑅 𝐷 𝑇 𝑁 𝑈 𝐶 𝜔

Maybenot RT-Light 324 0.86 3.75 — 4.02 — 20
Simulated RT-Light 206 0.86 3.75 1650 4.02 2.08 —
Maybenot RT-Heavy 238 0.94 3.55 — 3.95 — 20
Simulated RT-Heavy 220 0.94 3.55 2815 3.95 1.77 —

we used the monitored set, which consists of 19,000 traces of web
page visits over Tor. 95 websites were chosen based on popularity
metrics from the Open PageRank Initiative, and 10 subpages from
each site were visited 20 times, for a total of 200 traces per site.

We created defended datasets with Gong et al.’s FRONT simula-
tor [22] andHolland andHopper’s RegulaTor simulation scripts [33].
We also developed three Rust programs [78] to generate machines
for Maybenot FRONT, Pipelined FRONT, and Maybenot Regula-
Tor based on provided parameters, and we supplied them to the
Maybenot simulator to defend the BigEnough dataset. To aid in
comparison, we removed trailing padding packets from all traces
in the Maybenot-defended datasets.

We considered the two configurations of each defense discussed
by their authors: FT-1 and FT-2 for FRONT, and RT-Light and
RT-Heavy for RegulaTor. We selected parameters for Maybenot
FRONT and Pipelined FRONT to match the bandwidth overhead
of simulated FRONT, and we matched the latency overhead of
Maybenot RegulaTor to that of simulated RegulaTor. Parameters
are summarized in Table 1. Note that 𝜓 is number of pipelines
followed by number of PADDING states per pipeline for Pipelined
FRONT, and 𝜔 is cells per state in Maybenot RegulaTor.

Using the defended datasets, we calculated the similarity between
traces defended by simulation and those defended with Maybenot
FRONT, Pipelined FRONT, andMaybenot RegulaTor; the bandwidth
and latency overhead of each implementation; and performance
against the CUMUL [52], DF [69], and Tik-Tok [61] attacks.

6.3.1 Trace Comparison. Following the methodology of Smith et
al. [70], we represented each trace in our defended datasets with two
aggregated time series, one for download traffic and one for upload
traffic. Each aggregated time series was computed by partitioning
total download time into fixed-length windows of 𝐼 ms and creating
a sequence of the number of packets received or sent by the client
during each window. For our evaluations, we set 𝐼 = {25, 50}.

We measured trace similarity by computing the Pearson correla-
tion coefficient and a longest common subsequence (LCSS) measure
on the aggregated time series of corresponding traces. LCSS was cal-
culated by dividing the length of the longest common subsequence
by the shorter of the lengths of the two aggregated time series being
compared. The results for FRONT are shown in Figures 14 and 15,
and the results for RegulaTor are in Figure 16.

The correlation coefficient data for both FT-1 and FT-2 indicates
that Maybenot FRONT and Pipelined FRONT padded download
traffic similarly to simulated FRONT in most cases. With the FT-1

configuration, both defenses have a median correlation of approx-
imately 0.71 at 25 ms granularity and 0.86 at 50 ms granularity.
Similar results are observed with FT-2. Correlation for upload traf-
fic is lower, which is likely due to a higher ratio of padding to
non-padding traffic. The minimum median LCSS among all cases
is 0.43, which reflects the fact that padding differences are most
apparent near the beginning of a trace.

We attribute low correlation for some traces to the use of indi-
vidual states’ limit distributions to induce variation of the padding
count and window. It is possible for limits sampled for adjacent
PADDING states to differ, reducing correspondence to the Rayleigh
distribution shape. We also note that each implementation may
have selected a different padding count and window when defend-
ing the same trace, since simulations were run independently.

A moderate correlation for download traffic is observed with
Maybenot RegulaTor. This is due primarily to two factors: Maybenot
RegulaTor uses a small probability of transitioning to SEND_0 on a
NonPaddingSent event as a heuristic to mimic RegulaTor’s surge
restarting behavior, which could result in surges being restarted at
different times; and it sets a constant rate throughout a download,
whereas simulated RegulaTor caps the sending rate after a padding
count has been exceeded. Since upload traffic is simply sent at a
constant fraction of the rate of download traffic, the low correlation
observed for it is likely due to the same factors and the omission of
the 𝐶 parameter in Maybenot RegulaTor.

The median LCSS of RT-Light is about 0.46 with 𝐼 = 25 and 0.42
with 𝐼 = 50; although RT-Heavy has a higher median LCSS in both
cases, its interquartile range is much greater. This indicates that
traces were more similar near the beginning and that much of the
observed variation is due to different surge restart times: the prob-
ability of restarting a surge in Maybenot RegulaTor decreases as
sending rate increases, and it was higher with RT-Heavy, resulting
in more surge restarts later in a download. Lower LCSS for upload
traffic with RT-Heavy also suggests that the 𝐶 parameter is impor-
tant, since there was more upload traffic with this configuration
and many cells were likely sent later with Maybenot RegulaTor.

6.3.2 Overhead. We calculated bandwidth overhead by dividing
the number of padding bytes in each defended trace by the number
of non-padding bytes, and latency overhead refers to the time to the
last non-padding packet in a defended trace compared to original
download time. Mean results are in Table 2.

About 80% bandwidth overhead was incurred by FT-1 and 125%
by FT-2; there was little variation among implementations since

 

82



Maybenot: A Framework for Traffic Analysis Defenses WPES ’23, November 26, 2023, Copenhagen, Denmark

Table 2: Closed-world attack performance, average bandwidth and latency overhead.

Defense Attack accuracy (%) Bandwidth overhead (%) Latency overhead (%)
CUMUL DF Tik-Tok Send Receive Overall

Undefended 94.66 95.89 94.00 – – – –
Maybenot FT-1 27.68 72.11 64.00 597.51 41.84 78.24 –
Pipelined FT-1 15.72 58.00 55.89 613.45 43.13 80.49 –
Simulated FT-1 12.06 48.32 49.47 642.97 44.80 83.98 –
Maybenot FT-2 23.41 68.11 50.84 998.77 70.05 130.89 –
Pipelined FT-2 13.45 49.37 48.32 922.24 64.60 120.79 –
Simulated FT-2 9.12 40.95 45.79 952.91 66.24 124.32 –

Maybenot RT-Light 6.38 6.63 9.89 747.98 138.23 178.18 21.11
Simulated RT-Light 5.65 6.42 22.00 424.62 44.93 69.80 22.01
Maybenot RT-Heavy 6.88 8.11 10.00 1091.88 151.35 212.96 15.31
Simulated RT-Heavy 4.53 5.79 15.16 537.66 73.86 104.24 17.52

−0.25 0 0.25 0.5 0.75 1

50

25

(S)

(R)

(S)

(R)

Correlation coefficient

G
ra
nu

la
rit
y
(m

s)

(a) Correlation, FT-1.

−0.5−0.25 0 0.25 0.5 0.75 1

50

25

Correlation coefficient

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(b) Correlation, FT-2.

0.25 0.5 0.75 1

50

25

LCSS measure

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(c) LCSS, FT-1.

0 0.25 0.5 0.75 1

50

25

LCSS measure

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(d) LCSS, FT-2.

Figure 14: Trace comparison results, simulated FRONT and Maybenot FRONT.

−0.75−0.5−0.25 0 0.25 0.5 0.75 1

50

25

Correlation coefficient

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(a) Correlation, FT-1.

−0.75−0.5−0.25 0 0.25 0.5 0.75 1

50

25

Correlation coefficient

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(b) Correlation, FT-2.

0 0.25 0.5 0.75 1

50

25

LCSS measure

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(c) LCSS, FT-1.

0 0.25 0.5 0.75 1

50

25

LCSS measure

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(d) LCSS, FT-2.

Figure 15: Trace comparison results, simulated FRONT and Pipelined FRONT.

−0.75−0.5−0.25 0 0.25 0.5 0.75 1

50

25

Correlation coefficient

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(a) Correlation, RT-Light.

−0.75−0.5−0.25 0 0.25 0.5 0.75 1

50

25

Correlation coefficient

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(b) Correlation, RT-Heavy.

0 0.25 0.5 0.75 1

50

25

LCSS measure

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(c) LCSS, RT-Light.

0 0.25 0.5 0.75 1

50

25

LCSS measure

G
ra
nu

la
rit
y
(m

s)

(S)

(R)

(S)

(R)

(d) LCSS, RT-Heavy.

Figure 16: Trace comparison results, simulated RegulaTor and Maybenot RegulaTor.

 

83



WPES ’23, November 26, 2023, Copenhagen, Denmark Tobias Pulls and Ethan Witwer

Maybenot FRONT and Pipelined FRONT’s parameterswere selected
to match their bandwidth overhead to that of simulated FRONT.

To accomplish this for Maybenot FT-1, 𝑁 was decreased from
1700 to 1500. This was necessary because the use of a separate
uniform distribution for each PADDING state’s limit effectively re-
sulted in a uniform sum distribution for padding count, which has a
higher expected value. This is also apparent with FT-2, since 𝑁 was
maintained at 2500, and this resulted in 6.57% greater bandwidth
overhead than with simulated FRONT.

However, for Pipelined FRONT, 𝑁 had to be increased from 1700
to 3000 for FT-1 and from 2500 to 4500 for FT-2. We attribute this
to the use of pipelines with different padding budgets: there is only
a 1/𝜓 probability of choosing a pipeline that can send 𝑁 cells, and
further reduction of padding count occurs within pipelines.

Simulated RT-Light incurred 69.80% bandwidth overhead and
22.01% latency overhead; RT-Heavy resulted in a higher 104.24%
bandwidth overhead and slightly lower latency overhead (17.52%),
a consequence of its faster sending rate.

With both configurations, Maybenot RegulaTor had compara-
ble latency overhead to simulated RegulaTor, but its bandwidth
overhead was much greater: Maybenot RT-Light incurred 178.18%
overhead, a 108.38% increase over simulated RT-Light; and May-
benot RT-Heavy’s overhead was 212.96%, which is 108.72% higher
than simulated RT-Heavy.

This is due to the lack of the𝑁 parameter inMaybenot RegulaTor:
there is no mechanism to limit padding in the relay machine, so
a constant traffic rate is set throughout a download. Since surges
are restarted probabilistically, it is also likely that this happened
more often than necessary. A 108% increase in bandwidth overhead
makes Maybenot RegulaTor impractical in its current state.

6.3.3 Attacks. Weevaluated CUMUL [52], DF [69], and Tik-Tok [61]
in the closed-world setting against undefended traffic, simulated
FRONT and RegulaTor, and our implementations. We did this us-
ing the scripts provided by Gong et al. for CUMUL [22] and those
provided by Rahman et al. for DF and Tik-Tok [61]. We performed
10-fold cross-validation for all attacks, and we used the model pa-
rameters suggested by the attacks’ authors, with one exception: the
input size of DF and Tik-Tok was changed from 5,000 to 10,000 cells
to account for padding. The results are in Table 2.

All attacks achieved at least 94% accuracy on the undefended
dataset; these results are similar to those reported by the attacks’
authors, but slightly lower values are observed since each class in
the BigEnough dataset consists of multiple web pages.

Simulated FRONT decreased CUMUL’s accuracy to 12.06% with
the FT-1 configuration and 9.12%with FT-2. It reduced the accuracy
of DF and Tik-Tok to 48.32% and 49.47%, respectively, with FT-1;
and it reduced their accuracy to 40.95% and 45.79% with FT-2.

Maybenot FRONTwasmuch less effective than simulated FRONT:
it reduced Tik-Tok’s accuracy to 50.84% with FT-2, but it only de-
creased accuracy to a minimum of 64% in all other cases. Pipelined
FRONT was more effective: DF was the best attack against it, at-
taining 58% accuracy with FT-1 and 49.37% accuracy with FT-2.
We attribute Pipelined FRONT’s success to high variation in inter-
packet timing, padding count, and padding window.

Simulated RT-Light was effective, reducing the accuracy of
CUMUL to 5.65% andDF to 6.42%, but Tik-Tok attained 22% accuracy

against it. Similarly, simulated RT-Heavy lowered the accuracy of
CUMUL to 4.53% and DF to 5.79%, and Tik-Tok was the best attack,
achieving 15.16% accuracy.

Maybenot RegulaTor provided better overall protection than
simulated RegulaTor. Although CUMUL and DF achieved slightly
higher accuracy against it with the RT-Light configuration (6.38%
and 6.63%, respectively), Tik-Tok’s accuracy was only 9.89%. Simi-
larly, CUMUL andDFwere slightlymore effective against Maybenot
RT-Heavy, but Tik-Tok had lower accuracy than it did against sim-
ulated RT-Heavy.

This is likely due to the same factors that increased Maybenot
RegulaTor’s bandwidth overhead: there was no padding limit, so
traffic was sent at a constant rate throughout each download; and
surges were restarted probabilistically rather than deterministically,
so precise information about the number of queued packets was not
leaked. Nevertheless, Maybenot RegulaTor’s bandwidth overhead
would need to be decreased for it to be feasible for use in Tor.

7 DISCUSSION
7.1 Challenges Expressing Defenses
Our evaluation demonstrates Maybenot’s potential to support pro-
posed website fingerprinting defenses, but it also exposes some
inherent limitations of the framework along with areas of improve-
ment, which will allow for more expressive and concise defense
implementations in future versions.

We found that it is possible to effectively approximate FRONT,
though fairly complex machines are required to incorporate suf-
ficient trace-to-trace randomness. Even so, Pipelined FRONT pro-
vides slightly less protection against attacks than simulated FRONT,
highlighting the challenges associated with implementing hand-
crafted defenses, many of which are not designed specifically to be
implemented with a state machine model.

Though we were able to closely match the fundamental aspects
of RegulaTor’s behavior, several challenges lay in features that
required knowledge of queued cells and counting. We found that
it was not possible to directly implement padding limits, surge
restarting, or the 𝐶 parameter in the client machine. With the
addition of a few new events and actions, Maybenot could support
a more practical implementation of RegulaTor.

However, certain defenses do not lend themselves to implemen-
tation in the framework. We attempted to implement Surakav [24],
which aims to make cell sequences match a reference trace, with
certain adjustments to decrease overhead. We successfully created
a machine to replay reference traces [78], but we could not include
any of the remaining features of Surakav due to the coordination
required between client and server.

Fortunately, despite Maybenot’s inherent limitations, the same
features that would improve our implementations of FRONT and
RegulaTor may allow for heuristics that approximate more com-
plicated defenses such as Surakav. Based on our experience with
FRONT and RegulaTor, we believe that new events for queue moni-
toring, and allowing machines to create their own timers as well as
counters, would serve both of these purposes.

With these improvements, FRONT could be reimplemented to
increment a counter for padding count by a sampled value, avoiding

 

84



Maybenot: A Framework for Traffic Analysis Defenses WPES ’23, November 26, 2023, Copenhagen, Denmark

the necessity of multiple pipelines and larger, more complex ma-
chines. RegulaTor could also be implemented with the 𝑁 parameter
due to the ability to monitor queues based on length, and the 𝐶
parameter may be possible to approximate using a timer.

7.2 Why a Framework
What is the merit of developing a defense framework instead of
directly deploying defenses? For one, the last decade saw significant
advancements in traffic analysis attacks, notably website finger-
printing. In parallel, as attacks have improved, so have defenses. A
prime example here is from the Tor Project. They started with the
goal of implementing the WTF-PAD defense by Juárez et al. [40],
but the Deep Fingerprinting attack by Sirinam et al. [69] signif-
icantly reduced its effectiveness compared to earlier evaluations
against (among others) the k-fingerprinting attack by Hayes and
Danezis [27]. So instead of implementingWTF-PAD, the Tor Circuit
Padding Framework was born [55, 56].

A framework also allows for effortlessly combining multiple de-
fenses. Combining defenses is effective [24, 28, 73]. The selection of
combined defenses could also be dynamic and adaptive, e.g., based
on the current non-padding traffic to hide moments of inactivity or
disabled for bulk downloads. A framework is part of orchestrating
traffic analysis defenses.

Another aspect ismoving fromwebsite fingerprinting towebpage
fingerprinting defenses. While most web traffic is encrypted, it goes
directly between the client and involved servers. Therefore, any
network attacker can perform website fingerprinting in most cases
by simply observing all relevant IP addresses [68]. In a webpage
fingerprinting setting, optimal defenses would be per website and
optimized for the pages distributed by that website (and all involved
web servers hosting third-party content [68]). Application-layer
knowledge can help create more effective and efficient defenses [13].
A framework for defenses integrated into, e.g., QUIC or HTTP/3,
would allow for tailored per-site defenses. Websites could distribute
serialized defenses to clients upon connection establishment, or the
server could implement the client side of the defense partly in the
application layer (the inverse of QCSD [70]).

7.3 On Expressiveness
Relatedwork on defense frameworks (further described in Section 8)
provides varying levels of defense expressiveness, ranging from
supporting the Go programming language in WFDefProxy [23]
to a fixed trace regularization algorithm in QCSD [70] and state
machines in the Tor Circuit Padding Framework [55, 56]. In a simi-
lar vein, in the censorship circumvention space, Proteus [72] and
Marionette [20] take different approaches. Marionette models de-
fine probabilistic state machines where actions are blocking or
non-blocking arbitrary Python functions that trigger transitions
to other states. Proteus, in turn, specifies a domain-specific lan-
guage for circumvention protocols executed within a locked-down
runtime, where both the expressiveness of the language and its
runtime are restricted (e.g., no dynamic memory, concurrency, or
floating point arithmetic, while the standard system library/API is
an allowlist to allow, e.g., cryptographic operations and running
timers). Finally, yet another example is Flexible Anonymous Net-
works (FAN) [66] that makes anonymous networks programmable

by using eBPF [21] running sandboxed in userspace [49] (eBPF is
typically used within the Linux kernel) as plugins hooked within
the same process as the anonymity network implementation.

A key consideration for the expressiveness of a framework comes
down to the value of safety and security of protocol updates, as
well as the value of updates in and of themselves (as discussed
in Section 7.2). For example, in Tor the hourly consensus could
contain updates from a trusted source. Despite the inherent (nec-
essary) trust in the consensus, such potentially frequent updates
could benefit from security and safety guarantees by design in
the protocol update mechanism/framework. Full expressiveness
in, e.g., Go or Python is obviously potentially unsafe; even limited
approaches for allowing programmability based on more restricted
languages like eBPF or Webassembly with limited allow-listed APIs
are fraught with challenges necessitating runtime overheads and
careful considerations [9, 25, 26, 38, 42, 72].

For Maybenot, we opt for slowly expanding the capabilities of
Maybenot state machines. While we already had modest success
in porting FRONT and RegulaTor as-is, we know from the evalua-
tion of Mathews et al. [45] that defenses tailored to state machines
are competitive (see Interspace [45, 58]). As we expand Maybenot
machines to support richer expressiveness of defenses, we aim to
keep machine definitions safe and secure to support dynamic and
adaptive use cases. The goal is to be able to run effective and effi-
cient defenses within Maybenot, not necessarily to support every
possible type of defense. Regardless, as an API for integrating a
runtime for traffic analysis defenses, the interface of Maybenot
described in Section 3 is fundamentally solid: any defense will have
to hook into a protocol to collect events and use a combination of
bandwidth- and latency-inducing actions [16, 17, 79]. If future de-
fense frameworks opt for different runtimes, e.g., based on a unified
runtime with censorship circumvention protocols like Proteus, any
existing integration efforts from Maybenot will be well spent.

8 RELATEDWORK
Maybenot stems from the Tor Circuit Padding Framework, devel-
oped by Perry and Kadianakis [55, 56]. In turn, the Tor Circuit
Padding Framework evolved from WTF-PAD [40], a website fin-
gerprinting defense by Juárez et al. based on Adaptive Padding, a
concept introduced by Shmatikov and Wang [67].

8.1 Tor Circuit Padding Framework
As its name implies, the Tor Circuit Padding Framework is a frame-
work for generating padding within Tor circuits. It is part of Tor’s
C implementation. The framework facilitates clients’ negotiations
with network relays to enable hardcoded “padding machines”. At
the time of writing, only a pair of simple padding machines are
live on the Tor-network [56]. These machines aim to conceal the
configuration of client-initiated onion service circuits by ensuring
that regular circuits may also generate an identical cell sequence.

Maybenot stands out from the Tor Circuit Padding Framework
because its design enables incorporation into various protocols
thanks to being a standalone Rust library. In contrast, the Tor Cir-
cuit Padding Framework is tightly integrated into Tor and supports
negotiating padding machines—a feature that Maybenot lacks. May-
benot machines support probabilistic state transitions and blocking

 

85



WPES ’23, November 26, 2023, Copenhagen, Denmark Tobias Pulls and Ethan Witwer

actions, control associated bypass and replacement flags, and han-
dle padding of varying lengths. Additionally, Maybenot supports
a broader range of distributions but removes histogram support.
Maybenot also omits support for RTT-based estimates as timer
offsets, mainly due to the need for clearly defined use cases, making
Maybenot more streamlined.

8.2 QCSD
Smith et al. developed QCSD [70], a framework dedicated to traffic
analysis defenses optimized for QUIC [35]. QCSD is a client-side
framework that generates padding and induces traffic delays at the
server using features of QUIC and HTTP/3 [8]. This focus on the
client side is a boon for traffic analysis defense adoption as it elimi-
nates the need for the server or any intermediate entity to support
the framework. However, this strength is also its main weakness.
The reliance of QCSD on QUIC and HTTP/3 at endpoints prevents
it from only defending traffic between the client and intermedi-
ate relays/proxies. Websites that typically include resources from
multiple domains/endpoints are another complication.

The QCSD counterpart to Maybenot machines is a client-side
regularization algorithm. This algorithm shapes the connection to
conform to a target trace (static or dynamically generated). This
regularization algorithm could be split and implemented as May-
benot machines following the target trace. Shaping server-to-client
traffic involves control messages, adding overhead, and the chal-
lenging task of precise server traffic shaping. Smith et al. propose
that QUIC extensions could enable clients to shape server traffic
more accurately.

8.3 WFDefProxy
Gong et al. present WFDefProxy [23], a framework for implement-
ing website fingerprinting defenses and empirically assessing the
defenses within real-world networks. WFDefProxy builds upon
obfs4 [4], a Pluggable Transport (PT) [57] used by Tor, and is im-
plemented as a bridge. Clients connect directly to a bridge before
relaying traffic typically into the Tor network. This setup confines
WFDefProxy defenses to protection against network adversaries
between the client and bridge, excluding those in the Tor network
or controlling the bridge (i.e., the bridge is a trusted entity). The
development of defenses within WFDefProxy utilizes the Go pro-
gramming language, offering a richer language environment than
Maybenot machines, padding machines in the Tor Circuit Padding
Framework, and QCSD’s regularization algorithm.

Gong et al. provide an implementation of FRONT in WFDef-
Proxy that is structured as a finite state machine; however, they
describe it as operating on “trace-level” events [23] rather than the
packet-level events which are building blocks of both Maybenot
and the Tor Circuit Padding Framework. This implementation con-
sists of three states–Ready, Start, and Stop. State transitions occur
when packets are received, indicating the start of a download; and
when the traffic rate falls below a threshold, which is assumed to
indicate download completion. However, the actions taken upon
each transition are rather complex, such as scheduling padding and
coordinating explicitly with the relay.

Maybenot FRONT detects the beginning of a download similarly
with the NonPaddingRecv and NonPaddingSent events, and a soft

stop condition could be included with the addition of a timer to
Maybenot, as described in Section 7. However, Maybenot does not
support the complex actions possible with WFDefProxy: Maybenot
FRONT simply sends a packet upon transition to a PADDING state,
and events result directly from the actions of the machine. This
highlights the primary functional difference between Maybenot
and WFDefProxy: while Maybenot provides a set of simple actions,
WFDefProxy allows actions to be programmed specifically for a
defense, improving flexibility in implementation.

9 CONCLUSION
We presented Maybenot, a work-in-progress framework for traf-
fic analysis defenses heavily inspired by the Tor Circuit Padding
Framework [55, 56]. Defenses are implemented as probabilistic state
machines, and the framework provides a standard interface for in-
tegrating them into protocols such as Tor [18], Wireguard [19], and
QUIC [35]. To assist in developing defenses, we provide a simulator
to simulate how provided network traces could change if provided
machines were running at the client and server. By implementing
and evaluating FRONT [22] and RegulaTor [33] we identified key
challenges related to the limited expressiveness of state machines,
paving the way for further improvements to Maybenot while being
conservative for the sake of safety and security.

Our goal with Maybenot is to contribute towards widespread
real-world use of traffic analysis defenses. We hope that Maybenot
will be helpful for researchers, protocol implementers, and defend-
ers. With the monumental progress in AI and machine learning,
traffic analysis defenses will become increasingly important. Be-
cause we are in the middle of this AI revolution, a framework is
likely worthwhile in the short to medium term until the dust settles.
It took us decades to get to where we are today, making encrypted
end-to-end communication the norm. We will need similar time to
get to where we want to be with traffic analysis defenses.

ARTIFACT AVAILABILITY
The Maybenot Framework and Simulator are available at https:
//crates.io/crates/maybenot and https://crates.io/crates/maybenot-
simulator. They are both dual-licensed under either the MIT or
Apache 2.0 licenses.

Our implementations of FRONT and RegulaTor are available
on GitHub under the BSD-3-Clause license at https://github.com/
ewitwer/maybenot-defenses.

ETHICAL CONSIDERATIONS
We see no ethical concerns with our work.We used existing datasets
of network traces to simulate the defenses.

ACKNOWLEDGMENTS
For their valuable feedback, we would like to thank Matthias Beck-
erle, Namitha Binu, Rasmus Dahlberg, Grégoire Detrez, Linus Färn-
strand, David Hasselquist, Nick Hopper, Jan Jonsson, Jack Milless,
Mike Perry, Florentin Rochet, Odd Stranne, Fredrik Strömberg,
Björn Töpel, Shana Watters, Alice Zhang. This work was partially
funded by Mullvad VPN, the Swedish Internet Foundation, and the
Knowledge Foundation of Sweden. The paper was written respon-
sibly using ChatGPT, Github Copilot, and Grammarly.

 

86

https://crates.io/crates/maybenot
https://crates.io/crates/maybenot
https://crates.io/crates/maybenot-simulator
https://crates.io/crates/maybenot-simulator
https://github.com/ewitwer/maybenot-defenses
https://github.com/ewitwer/maybenot-defenses


Maybenot: A Framework for Traffic Analysis Defenses WPES ’23, November 26, 2023, Copenhagen, Denmark

REFERENCES
[1] Paul Mozur Aaron Krolik and Adam Satariano. accessed 2023-07-03. Rus-

sia Seeds New Surveillance Tech to Squash Ukraine War Dissent - The New
York Times. https://www.nytimes.com/2023/07/03/technology/russia-ukraine-
surveillance-tech.html.

[2] Kota Abe and Shigeki Goto. 2016. Fingerprinting attack on Tor anonymity using
deep learning. Proceedings of the Asia-Pacific Advanced Network 42 (2016), 15–20.

[3] Daniel Agnew. 2020. Google Trends Reveals Surge in Demand for VPN.
https://www.namecheap.com/blog/vpn-surge-in-demand/.

[4] Yawning Angel. accessed 2023-02-18. obfs4. https://github.com/Yawning/obfs4/
blob/master/doc/obfs4-spec.txt.

[5] Apple. 2021. iCloud Private Relay Overview.
https://www.apple.com/privacy/docs/iCloud_Private_Relay _
Overview_Dec2021.PDF.

[6] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad
Omara, and Katriel Cohn-Gordon. 2023. The Messaging Layer Security (MLS) Pro-
tocol. Internet-Draft draft-ietf-mls-protocol-20. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/20/ Work in Progress.

[7] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2019. Var-CNN: A
Data-Efficient Website Fingerprinting Attack Based on Deep Learning. Proc. Priv.
Enhancing Technol. 2019, 4 (2019), 292–310. https://doi.org/10.2478/popets-2019-
0070

[8] Mike Bishop. 2022. HTTP/3. RFC 9114. https://doi.org/10.17487/RFC9114
[9] Daniel Borkmann. 2023. BPF and Spectre: Mitigating transient execution attacks

– Daniel Borkmann, Isovalent. https://www.youtube.com/watch?v=6N30Yp5f9c4
accessed 2023-06-09.

[10] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In ACM SIGSAC. 227–238. https://doi.org/10.1145/2660267.2660362

[11] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching
from a distance: website fingerprinting attacks and defenses. In CCS.

[12] Heyning Cheng and Ron Avnur. 1998. Traffic analysis of SSL encrypted web
browsing. Project paper, University of Berkeley (1998).

[13] Giovanni Cherubin, Jamie Hayes, and Marc Juárez. 2017. Website Fingerprinting
Defenses at the Application Layer. PETS (2017).

[14] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online Website
Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the Real
World. In USENIX Security.

[15] George Danezis. 2004. The Traffic Analysis of Continuous-Time Mixes. PETS
(2004).

[16] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2018.
Anonymity Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low La-
tency - Choose Two. In IEEE SP. 108–126. https://doi.org/10.1109/SP.2018.00011

[17] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2020.
Comprehensive Anonymity Trilemma: User Coordination is not enough. Proc.
Priv. Enhancing Technol. 2020, 3 (2020), 356–383. https://doi.org/10.2478/popets-
2020-0056

[18] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security.

[19] Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel.
In 24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Society.

[20] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. 2015. Marionette: A
Programmable Network Traffic Obfuscation System. In USENIX Security.

[21] eBPF Community. accessed 2023-07-16. eBPF: Dynamically program the kernel
for efficient networking, observability, tracing, and security. https://ebpf.io/.

[22] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX
Association, 717–734. https://www.usenix.org/conference/usenixsecurity20/
presentation/gong

[23] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2021. WFDefProxy:
Modularly Implementing and Empirically Evaluating Website Fingerprinting
Defenses. CoRR arXiv (2021). https://arxiv.org/abs/2111.12629.

[24] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav: Gen-
erating Realistic Traces for a Strong Website Fingerprinting Defense. In IEEE
S&P.

[25] WebAssembly Community Group. 2023. WebAssembly System Interface. https:
//github.com/WebAssembly/WASI accessed 2023-05-08.

[26] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. 2017. Bringing the
web up to speed with WebAssembly. In PLDI.

[27] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., Thorsten Holz and Stefan Savage
(Eds.). USENIX Association, 1187–1203. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/hayes

[28] Sébastien Henri, Gines Garcia-Aviles, Pablo Serrano, Albert Banchs, and Patrick
Thiran. 2020. Protecting against Website Fingerprinting with Multihoming. PETS
(2020). https://doi.org/10.2478/popets-2020-0019

[29] Dominik Herrmann, RolfWendolsky, and Hannes Federrath. 2009. Website finger-
printing: attacking popular privacy enhancing technologies with the multinomial
naïve-bayes classifier. In CCSW.

[30] Andrew Hintz. 2002. Fingerprinting Websites Using Traffic Analysis. In PET.
[31] Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH).

RFC 8484. https://doi.org/10.17487/RFC8484
[32] James K. Holland, Jason Carpenter, Se Eun Oh, and Nicholas Hopper. 2023. DeTor-

rent: An Adversarial Padding-only Traffic Analysis Defense. CoRR arXiv (2023).
https://arxiv.org/abs/2012.06609.

[33] James K Holland and Nicholas Hopper. 2022. RegulaTor: A Straightforward
Website Fingerprinting Defense. PETS (2022).

[34] Christian Huitema, Sara Dickinson, and Allison Mankin. 2022. DNS over Dedi-
cated QUIC Connections. RFC 9250. https://doi.org/10.17487/RFC9250

[35] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. https://doi.org/10.17487/RFC9000

[36] Rob Jansen and Nicholas Hopper. 2012. Shadow: Running Tor in a Box for
Accurate and Efficient Experimentation. In NDSS.

[37] Rob Jansen and Ryan Wails. 2023. Data-Explainable Website Fingerprinting with
Network Simulation. In PETS.

[38] Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le, and Tianyin
Xu. 2023. Kernel extension verification is untenable. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems, HOTOS 2023, Providence, RI, USA,
June 22-24, 2023.

[39] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Díaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.).
ACM, 263–274. https://doi.org/10.1145/2660267.2660368

[40] Marc Juárez, Mohsen Imani, Mike Perry, Claudia Díaz, and Matthew Wright.
2016. Toward an Efficient Website Fingerprinting Defense. In ESORICS.

[41] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz. 2002. Limits of Anonymity
in Open Environments. In Information Hiding.

[42] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020),
93–101.

[43] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian
Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2020.
TrafficSliver: Fighting Website Fingerprinting Attacks with Traffic Splitting. In
CCS.

[44] Marc Liberatore and Brian Neil Levine. 2006. Inferring the source of encrypted
HTTP connections. In CCS.

[45] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,
Nicholas Hopper, and Matthew Wright. 2022. SoK: A Critical Evaluation of
Efficient Website Fingerprinting Defenses. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 344–361.

[46] Steven J. Murdoch and George Danezis. 2005. Low-Cost Traffic Analysis of Tor.
In IEEE S&P.

[47] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning. In CCS. 1962–1976. https:
//doi.org/10.1145/3243734.3243824

[48] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2021. Defeating DNN-
Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturba-
tions. In USENIX Security.

[49] Big Switch Networks. 2023. uBPF. https://github.com/iovisor/ubpf accessed
2023-07-16.

[50] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A BespokeWebsite
Fingerprinting Defense. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, WPES 2014, Scottsdale, AZ, USA, November 3, 2014, Gail-Joon
Ahn and Anupam Datta (Eds.). ACM, 131–134. https://doi.org/10.1145/2665943.
2665950

[51] Se Eun Oh, Taiji Yang, Nate Mathews, James K. Holland, Mohammad Saidur
Rahman, Nicholas Hopper, and Matthew Wright. 2022. DeepCoFFEA: Improved
Flow Correlation Attacks on Tor via Metric Learning and Amplification. In IEEE
S&P.

[52] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In NDSS.

[53] Tommy Pauly, David Schinazi, Alex Chernyakhovsky, Mirja Kühlewind, and
Magnus Westerlund. 2023. Proxying IP in HTTP. Internet-Draft draft-ietf-masque-
connect-ip-13. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
draft-ietf-masque-connect-ip/13/ Work in Progress.

[54] Mike Perry. 2013. A Critique of Website Traffic Fingerprinting Attacks.
https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks.

[55] Mike Perry and George Kadianakis. accessed 2023-02-07. Circuit Padding Devel-
oper Documentation. https://gitweb.torproject.org/tor.git/tree/doc/HACKING/

 

87

https://www.nytimes.com/2023/07/03/technology/russia-ukraine-surveillance-tech.html
https://www.nytimes.com/2023/07/03/technology/russia-ukraine-surveillance-tech.html
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/20/
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.17487/RFC9114
https://www.youtube.com/watch?v=6N30Yp5f9c4
https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1109/SP.2018.00011
https://doi.org/10.2478/popets-2020-0056
https://doi.org/10.2478/popets-2020-0056
https://ebpf.io/
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://arxiv.org/abs/2111.12629
https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.2478/popets-2020-0019
https://doi.org/10.17487/RFC8484
https://arxiv.org/abs/2012.06609
https://doi.org/10.17487/RFC9250
https://doi.org/10.17487/RFC9000
https://doi.org/10.1145/2660267.2660368
https://doi.org/10.1145/3243734.3243824
https://doi.org/10.1145/3243734.3243824
https://github.com/iovisor/ubpf
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/2665943.2665950
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip/13/
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip/13/
https://gitweb.torproject.org/tor.git/tree/doc/HACKING/CircuitPaddingDevelopment.md
https://gitweb.torproject.org/tor.git/tree/doc/HACKING/CircuitPaddingDevelopment.md


WPES ’23, November 26, 2023, Copenhagen, Denmark Tobias Pulls and Ethan Witwer

CircuitPaddingDevelopment.md.
[56] Mike Perry and George Kadianakis. accessed 2023-02-07. Tor Padding Specifica-

tion. https://gitweb.torproject.org/torspec.git/tree/padding-spec.txt.
[57] Tor Project. accessed 2023-02-18. Pluggable Transport Specification (Version 1).

https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt.
[58] Tobias Pulls. 2020. Towards Effective and Efficient Padding Machines for Tor.

CoRR arXiv (2020). https://arxiv.org/abs/2011.13471.
[59] Tobias Pulls and Ethan Witwer. 2023. Maybenot: A Framework for Traffic Analy-

sis Defenses. arXiv:2304.09510 [cs.CR]
[60] Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and MatthewWright.

2021. Mockingbird: Defending Against Deep-Learning-Based Website Finger-
printing Attacks With Adversarial Traces. IEEE Transactions on Information
Forensics and Security (2021).

[61] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. Tik-Tok: The Utility of Packet Timing in
Website Fingerprinting Attacks. Proc. Priv. Enhancing Technol. 2020, 3 (2020),
5–24. https://doi.org/10.2478/popets-2020-0043

[62] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and Roya Ensafi. 2022. VP-
NInspector: Systematic Investigation of the VPN Ecosystem. In NDSS.

[63] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[64] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In
NDSS. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/
ndss2018_03A-1_Rimmer_paper.pdf

[65] Vera Rimmer, Theodor Schnitzler, Tom van Goethem, Abel Rodríguez Romero,
Wouter Joosen, and Katharina Kohls. 2022. Trace Oddity: Methodologies for
Data-Driven Traffic Analysis on Tor. PETS (2022).

[66] Florentin Rochet and Tariq Elahi. 2022. Towards Flexible Anonymous Networks.
https://arxiv.org/abs/2203.03764.

[67] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing Analysis in Low-Latency
Mix Networks: Attacks and Defenses. In ESORICS.

[68] Sandra Siby, Ludovic Barman, Christopher Wood, Marwan Fayed, Nick Sullivan,
and Carmela Troncoso. 2023. Evaluating practical QUIC website fingerprinting
defenses for the masses. PETS (2023).

[69] Payap Sirinam, Mohsen Imani, Marc Juárez, and MatthewWright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In CCS.

[70] Jean-Pierre Smith, Luca Dolfi, Prateek Mittal, and Adrian Perrig. 2022. QCSD:
A QUIC Client-Side Website-Fingerprinting Defence Framework. In USENIX
Security.

[71] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padman-
abhan, and Lili Qiu. 2002. Statistical Identification of Encrypted Web Browsing
Traffic. In IEEE S&P.

[72] Ryan Wails, Rob Jansen, Aaron Johnson, and Micah Sherr. 2023. Proteus: Pro-
grammable Protocols for Censorship Circumvention. (2023).

[73] Mona Wang, Anunay Kulshrestha, Liang Wang, and Prateek Mittal. 2022. Lever-
aging strategic connection migration-powered traffic splitting for privacy. PETS
(2022).

[74] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting on Tor. In
WPES.

[75] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. PETS (2016).

[76] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense Against
Passive Website Fingerprinting Attacks. In 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and
Thomas Ristenpart (Eds.). USENIX Association, 1375–1390. https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao

[77] Xinyuan Wang, Douglas S. Reeves, and Shyhtsun Felix Wu. 2002. Inter-Packet
Delay Based Correlation for Tracing Encrypted Connections through Stepping
Stones. In ESORICS.

[78] Ethan Witwer. 2023. State Machine Frameworks for Website Fingerprinting
Defenses: Maybe Not. arXiv:2310.10789 [cs.CR]

[79] Ethan Witwer, James K. Holland, and Nicholas Hopper. 2022. Padding-only
Defenses Add Delay in Tor. InWPES.

A PIPELINED FRONT
Pipelining is a technique to unify multiple machines: rather than
probabilistically selecting from a pool of machines upon connec-
tion establishment, a single machine incorporates multiple pipelines.
From the initial state, any action has a determined probability of
causing a transition to each of the configured pipelines, which op-
erate independently. Because the framework distinguishes between
machine definition and runtime, large machines can efficiently be
shared between instances of the framework. One downside with
pipelining is that different machine-specific padding and blocking
limits of unified machines cannot be expressed.

Figure 17 depicts a Pipelined FRONT machine, whose design is
described in Section 6. The NonPaddingSent and NonPaddingRecv
events both have an equal probability of resulting in transition
to a number of PADDING states, each of which leads to a different
sequence of states that will be followed for the remainder of the
download. This allows for parameter variation (in this case, of the
padding budget) which cannot be encoded within individual states
to still be represented with one machine.

We emphasize that pipelining is not an inherent feature of the
framework; it is merely a possible use case that illustrates some
of Maybenot’s capabilities. For certain defenses, other represen-
tations to account for dynamic parameter selection may be more
efficient. Specifically, it may be useful to have convergence/diver-
gence behavior with overlapping states between pipelines, among
other possible behaviors. We encourage defenders to consider all
of Maybenot’s features when designing hand-crafted machines.

 

88

https://gitweb.torproject.org/tor.git/tree/doc/HACKING/CircuitPaddingDevelopment.md
https://gitweb.torproject.org/torspec.git/tree/padding-spec.txt
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://arxiv.org/abs/2011.13471
https://arxiv.org/abs/2304.09510
https://doi.org/10.2478/popets-2020-0043
https://doi.org/10.17487/RFC8446
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
https://arxiv.org/abs/2203.03764
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://arxiv.org/abs/2310.10789


Maybenot: A Framework for Traffic Analysis Defenses WPES ’23, November 26, 2023, Copenhagen, Denmark

START

PADDING

PADDING

PADDING PADDING

StateEnd

PADDING PADDING

PaddingSent
100%

NonPaddingSent
NonPaddingRecv

50%

LimitReached
100%

LimitReached
100%

PaddingSent
100%

PaddingSent
100%

PaddingSent
100%

LimitReached
100%

LimitReached
100%

PaddingSent
100%

PaddingSent
100%

LimitReached
100%

Figure 17: Pipelined FRONT machine with two pipelines, three PADDING states each.

 

89


	Abstract
	1 Introduction
	2 Background
	2.1 Website Fingerprinting
	2.2 Real-World Impact of Traffic Analysis

	3 Maybenot Framework
	3.1 Instantiation
	3.2 Triggering Events
	3.3 Scheduling and Performing Actions

	4 Maybenot Machines
	4.1 State
	4.2 Distribution
	4.3 Serialization

	5 Maybenot Simulator
	5.1 Base Network Traces
	5.2 Simulating Machines

	6 Implementing Defenses
	6.1 FRONT
	6.2 RegulaTor
	6.3 Evaluation

	7 Discussion
	7.1 Challenges Expressing Defenses
	7.2 Why a Framework
	7.3 On Expressiveness

	8 Related Work
	8.1 Tor Circuit Padding Framework
	8.2 QCSD
	8.3 WFDefProxy

	9 Conclusion
	Acknowledgments
	References
	A Pipelined FRONT



